
•1

CPE/EE 422/522
Advanced Logic Design

L07
Electrical and Computer Engineering
University of Alabama in Huntsville

18/06/2003 UAH-CPE/EE 422/522 AM 2

Outline

• What we know
– How to model Combinational Networks in VHDL

• Structural, Dataflow, Behavioral

– How to model Flip-flops in VHDL
– Processes
– Delays (delta, transport, inertial)

• What we do not know
– How to model FSM in VHDL
– Wait statements
– Variables, Signals, Arrays
– VHDL Operators
– Procedures, Functions
– Packages, Libraries
– Additional Topics (if time)

18/06/2003 UAH-CPE/EE 422/522 AM 3

Review: VHDL Program Structure

18/06/2003 UAH-CPE/EE 422/522 AM 4

Review: JK Flip-Flop Model

18/06/2003 UAH-CPE/EE 422/522 AM 5

Review: VHDL Models for a MUX

Sel represents the integer
equivalent of a 2-bit binary
number with bits A and B

If a MUX model is used inside a process,
the MUX can be modeled using a CASE statement
(cannot use a concurrent statement):

18/06/2003 UAH-CPE/EE 422/522 AM 6

Timing Model

• VHDL uses the following simulation cycle to model
the stimulus and response nature of digital
hardware

Delay
Start Simulation

Update Signals Execute Processes

End Simulation

•2

18/06/2003 UAH-CPE/EE 422/522 AM 7

Review: Delay Types

• All VHDL signal assignment statements prescribe
an amount of time that must transpire before the
signal assumes its new value

• This prescribed delay can be in one of three forms:
– Transport -- prescribes propagation delay only
– Inertial -- prescribes propagation delay and minimum input pulse width
– Delta -- the default if no delay time is explicitly specified

Input
delay

Output

18/06/2003 UAH-CPE/EE 422/522 AM 8

Problem #1

• Using the labels,
list the order in
which the following
signal assignments
are evaluated if in2
changes from a '0'
to a '1'. Assume
in1 has been a '1'
and in2 has been a
'0' for a long time,
and then at time t
in2 changes from a
'0' to a '1'.

entity not_another_prob is

port (in1, in2: in bit;

a: out bit);

end not_another_prob;

architecture oh_behave of not_another_prob is

signal b, c, d, e, f: bit;

begin

L1: d <= not(in1);

L2: c<= not(in2);

L3: f <= (d and in2) ;

L4: e <= (c and in1) ;

L5: a <= not b;

L6: b <= e or f;

end oh_behave;

18/06/2003 UAH-CPE/EE 422/522 AM 9

Modeling a Sequential Machine

Mealy Machine for
8421 BCD to 8421 BCD + 3 bit serial converter

How to model this in VHDL?

18/06/2003 UAH-CPE/EE 422/522 AM 10

Behavioral VHDL Model

Two processes:
• the first represents the

combinational network;
• the second represents

the state register

18/06/2003 UAH-CPE/EE 422/522 AM 11

Simulation of the VHDL Model

Simulation command file:

Waveforms:

18/06/2003 UAH-CPE/EE 422/522 AM 12

Dataflow VHDL Model

33

21313213

12

21

''
''''')(

)(

)(

XQQXZ
QQXQQXQQQtQ

QtQ

QtQ

+=
++=

=

=

+

+

+

•3

18/06/2003 UAH-CPE/EE 422/522 AM 13

Structural Model

Package bit_pack is a part of library BITLIB –
includes gates, flip-flops, counters
(See Appendix B for details)

18/06/2003 UAH-CPE/EE 422/522 AM 14

Simulation of the Structural Model

Simulation command file:

Waveforms:

18/06/2003 UAH-CPE/EE 422/522 AM 15

Wait Statements

• ... an alternative to a sensitivity list
– Note: a process cannot have both wait statement(s)

and a sensitivity list

• Generic form of a process with wait statement(s)
process
begin

sequential -statements
wait statement
sequential -statements

wait-statement
...

end process;

How wait statements work?
• Execute seq. statement until

a wait statement is encountered.
• Wait until the specified condition is satisfied.
• Then execute the next

set of sequential statements until
the next wait statement is encountered.

• ...
• When the end of the process is reached

start over again at the beginning.

18/06/2003 UAH-CPE/EE 422/522 AM 16

Forms of Wait Statements

• Wait on
– until one of the signals in the

sensitivity list changes

• Wait for
– waits until the time specified

by the time expression has
elapsed

– What is this:
wait for 0 ns;

• Wait until
– the booleanexpression is

evaluated whenever one of
the signals in the expression
changes, and the process
continues execution when
the expression evaluates to
TRUE

wait on sensitivity-list;
wait for time-expression;
wait until boolean-expression;

18/06/2003 UAH-CPE/EE 422/522 AM 17

Using Wait Statements (1)

18/06/2003 UAH-CPE/EE 422/522 AM 18

Using Wait Statements (2)

•4

18/06/2003 UAH-CPE/EE 422/522 AM 19

Variables

• What are they for:
Local storage in processes,
procedures, and functions

• Declaring variables
variable list_of_variable_names : type_name
[:= initial value];

• Variables must be declared within the process in
which they are used and are local to the process
– Note: exception to this is SHARED variables

18/06/2003 UAH-CPE/EE 422/522 AM 20

Signals

• Signals must be declared outside a process
• Declaration form

signal list_of_signal_names : type_name
[:= initial value];

• Declared in an architecture can be used
anywhere within that architecture

18/06/2003 UAH-CPE/EE 422/522 AM 21

Constants

• Declaration form
constant constant_name : type_name := constant_value;

• Constants declared at the start of an architecture
can be used anywhere within that architecture

• Constants declared within a process are local
to that process

constant delay1 : time := 5 ns;

18/06/2003 UAH-CPE/EE 422/522 AM 22

Variables vs. Signals

• Variable assignment statement
variable_name := expression;

• Signal assignment statement
signal_name <= expression [after delay];

– expression is evaluated and the variable is
instantaneously updated
(no delay, not even delta delay)

– expression is evaluated and the signal is scheduled to
change after delay; if no delay is specified the signal is
scheduled to be updated after a delta delay

18/06/2003 UAH-CPE/EE 422/522 AM 23

Variables vs. Signals (cont’d)

Process Using Variables Process Using Signals

Sum = ? Sum = ?

18/06/2003 UAH-CPE/EE 422/522 AM 24

Predefined VHDL Types

• Variables, signals, and constants can have any
one of the predefined VHDL types or they can have
a user-defined type

• Predefined Types
– bit – {‘0’, ‘1’}

– boolean – {TRUE, FALSE}
– integer – [-231 - 1.. 231 – 1}

– real – floating point number in range –1.0E38 to +1.0E38
– character – legal VHDL characters including lower-

uppercase letters, digits, special characters, ...

– time – an integer with units fs, ps, ns, us, ms, sec, min,
or hr

•5

18/06/2003 UAH-CPE/EE 422/522 AM 25

User Defined Type

• Common user-defined type is enumerated
type state_type is (S0, S1, S2, S3, S4, S5);
signal state : state_type := S1;

• If no initialization, the default initialization is the leftmost
element in the enumeration list (S0 in this example)

• VHDL is strongly typed language =>
signals and variables of different types cannot be
mixed in the same assignment statement,
and no automatic type conversion is performed

18/06/2003 UAH-CPE/EE 422/522 AM 26

Arrays

• Example
type SHORT_WORD is array (15 downto 0) of bit;

signal DATA_WORD : SHORT_WORD;
variable ALT_WORD : SHORT_WORD := “0101010101010101”;
constant ONE_WORD : SHORT_WORD := (others => ‘1’);

• ALT_WORD(0) – rightmost bit

• ALT_WORD(5 downto 0) – low order 6 bits

• General form
type arrayTypeName is array index_range of element_type;
signal arrayName : arrayTypeName [:=InitialValues];

18/06/2003 UAH-CPE/EE 422/522 AM 27

Arrays (cont’d)

• Multidimensional arrays
type matrix4x3 is array (1 to 4, 1 to 3) of integer;
variable matrixA: matrix4x3 :=
((1,2,3), (4,5,6), (7,8,9), (10,11,12));

• matrixA(3, 2) = ?

• Unconstrained array type
type intvec is array (natural range<>) of integer;

• range must be specified when the array object is declared

signal intvec5 : intvec(1 to 5) := (3,2,6,8,1);

type matrix is array (natural range<>,natural range<>)
of integer;

18/06/2003 UAH-CPE/EE 422/522 AM 28

Sequential Machine Model
Using State Table

18/06/2003 UAH-CPE/EE 422/522 AM 29

Predefined Unconstrained Array Types

• Bit_vector, string

constant A : bit_vector(0 to 5) := “10101”;
-- (‘1’, ‘0’, ‘1’, ‘0’, ‘1’);

• Subtypes

subtype SHORT_WORD is : bit_vector(15 to 0);

• POSITIVE, NATURAL –
predefined subtypes of type integer

• include a subset of the values specified by the type

18/06/2003 UAH-CPE/EE 422/522 AM 30

VHDL Operators

1. Binary logical operators: and or nand nor xor xnor
2. Relational: = /= < <= > >=
3. Shift: sll srl sla sra rol ror
4. Adding: + - & (concatenation)
5. Unary sign: + -
6. Multiplying: * / mod rem
7. Miscellaneous: not abs **

• Class 7 has the highest precedence (applied first),
followed by class 6, then class 5, etc

•6

18/06/2003 UAH-CPE/EE 422/522 AM 31

Example of VHDL Operators

18/06/2003 UAH-CPE/EE 422/522 AM 32

Example of Shift Operators

18/06/2003 UAH-CPE/EE 422/522 AM 33

VHDL Functions

• Functions execute a sequential algorithm and
return a single value to calling program

• A = “10010101”

• General form

18/06/2003 UAH-CPE/EE 422/522 AM 34

For Loops

18/06/2003 UAH-CPE/EE 422/522 AM 35

Add Function

18/06/2003 UAH-CPE/EE 422/522 AM 36

VHDL Procedures

• Facilitate decomposition of VHDL code into modules
• Procedures can return any number of values

using output parameters

procedure_name (actual-parameter-list);

• General form
procedure procedure_name (formal-parameter-list) is

[declarations]
begin
Sequential-statements

end procedure_name;

•7

18/06/2003 UAH-CPE/EE 422/522 AM 37

Procedure for Adding Bit_vectors

18/06/2003 UAH-CPE/EE 422/522 AM 38

Parameters for Subprogram Calls

18/06/2003 UAH-CPE/EE 422/522 AM 39

Packages and Libraries

• Provide a convenient way of referencing
frequently used functions and components

• Package declaration

• Package body [optional]

18/06/2003 UAH-CPE/EE 422/522 AM 40

Library BITLIB – bit_pack package

18/06/2003 UAH-CPE/EE 422/522 AM 41

Library BITLIB – bit_pack package

18/06/2003 UAH-CPE/EE 422/522 AM 42

Library BITLIB – bit_pack package

•8

18/06/2003 UAH-CPE/EE 422/522 AM 43

VHDL Model for a 74163 Counter

• 74613 – 4-bit fully synchronous binary counter
• Counter operations

• Generate a Cout in state 15 if T=1
• Cout = Q3Q2Q1Q0T

18/06/2003 UAH-CPE/EE 422/522 AM 44

VHDL Model for a 74163 Counter

18/06/2003 UAH-CPE/EE 422/522 AM 45

Cascaded Counters

18/06/2003 UAH-CPE/EE 422/522 AM 46

Cascaded Counters (cont’d)

18/06/2003 UAH-CPE/EE 422/522 AM 47

Additional Topics in VHDL

• Attributes
• Transport and Inertial Delays
• Operator Overloading
• Multivalued Logic and Signal Resolution
• IEEE 1164 Standard Logic
• Generics
• Generate Statements
• Synthesis of VHDL Code
• Synthesis Examples
• Files and Text IO

18/06/2003 UAH-CPE/EE 422/522 AM 48

Signal Attributes

Attributes associated with signals
that return a value

A’event – true if a change in S has just occurred

A’active – true if A has just been reevaluated, even if A does not change

•9

18/06/2003 UAH-CPE/EE 422/522 AM 49

Signal Attributes (cont’d)

• Event
– occurs on a signal every time it is changed

• Transaction
– occurs on a signal every time it is evaluated

• Example:

A <= B - - B changes at time T

A’event

T + 1d

T

B’event

18/06/2003 UAH-CPE/EE 422/522 AM 50

Signal Attributes (cont’d)
entity test is
end;
architecture bmtest of test is

signal A : bit;
signal B : bit;
signal C : bit;

begin
A <= not A after 20 ns;
B <= '1';
C <= A and B;

process(A, B, C)
variable Aev : bit;
variable Aac : bit;
variable Bev : bit;
variable Bac : bit;
variable Cev : bit;
variable Cac : bit;

begin
if (A'event) then Aev := '1';
else Aev := '0';
end if;
if (A'active) then Aac := '1';
else Aac := '0';
end if;
if (B'event) then Bev := '1';
else Bev := '0';
end if;
if (B'active) then Bac := '1';
else Bac := '0';
end if;
if (C'event) then Cev := '1';
else Cev := '0';
end if;
if (C'active) then Cac := '1';
else Cac := '0';
end if;

end process;

end bmtest;

18/06/2003 UAH-CPE/EE 422/522 AM 51

Signal Attributes (cont’d)
ns /test/a /test/line__15/bev

delta /test/b /test/line__15/ bac
/test/c /test/line__15/cev

/test/line__15/aev /test/line__15/cac
/test/line__15/aac

0 +0 0 0 0 0 0 0 0 0 0
0 +1 0 1 0 0 0 1 1 0 1

20 +0 1 1 0 1 1 0 0 0 0
20 +1 1 1 1 0 0 0 0 1 1
40 +0 0 1 1 1 1 0 0 0 0
40 +1 0 1 0 0 0 0 0 1 1

18/06/2003 UAH-CPE/EE 422/522 AM 52

Signal Attributes (cont’d)

Attributes that create a signal

18/06/2003 UAH-CPE/EE 422/522 AM 53

Examples of Signal Attributes

18/06/2003 UAH-CPE/EE 422/522 AM 54

Using Attributes for Error Checking

check: process
begin

wait until rising_edge(Clk);
assert (D’stable(setup_time))

report(“Setup time violation”)
severity error;

wait for hold_time;
assert (D’stable(hold_time))

report(“Hold time violation”)

severity error;
end process check;

•10

18/06/2003 UAH-CPE/EE 422/522 AM 55

Array Attributes

A can be either an array name or an array type.

Array attributes work with signals, variables, and constants.
18/06/2003 UAH-CPE/EE 422/522 AM 56

Recap: Adding Vectors

Note: Add1 and Add2 vectors must be dimensioned as N-1 downto 0.

Use attributes to write more general procedure that places
no restrictions on the range of vectors other than the lengths m ust be same.

18/06/2003 UAH-CPE/EE 422/522 AM 57

Procedure for Adding Bit Vectors

18/06/2003 UAH-CPE/EE 422/522 AM 58

Transport and Inertial Delay

18/06/2003 UAH-CPE/EE 422/522 AM 59

Transport and Inertial Delay (cont’d)
Z3 <= reject 4 ns X after 10 ns;

Reject is equivalent to a combination of inertial and transport delay:
Zm <= X after 4 ns;

Z3 <= transport Zm after 6 ns;

A <= transport B after 1 ns;

A <= transport C after 2 ns;

Statements executed at time T
– B at T+1, C at T+2

Statements executed at time T
– C at T + 2:

A <= B after 1 ns;

A <= C after 2 ns;

Statements executed at time T
– C at T + 1:

A <= transport B after 2 ns;

A <= transport C after 1 ns;

18/06/2003 UAH-CPE/EE 422/522 AM 60

Operator Overloading

• Operators +, - operate on integers
• Write procedures for bit vector addition/subtraction

– addvec , subvec

• Operator overloading allows using + operator
to implicitly call an appropriate addition function

• How does it work?
– When compiler encounters a function declaration in

which the function name is an operator enclosed in
double quotes, the compiler treats the function as an
operator overloading (“+”)

– when a “+” operator is encountered, the compiler
automatically checks the types of operands and calls
appropriate functions

•11

18/06/2003 UAH-CPE/EE 422/522 AM 61

VHDL Package with Overloaded Operators

18/06/2003 UAH-CPE/EE 422/522 AM 62

Overloaded Operators

• A, B, C – bit vectors
• A <= B + C + 3 ?
• A <= 3 + B + C ?

• Overloading can also be applied
to procedures and functions
– procedures have the same name –

type of the actual parameters in the procedure call
determines which version of the procedure is called

18/06/2003 UAH-CPE/EE 422/522 AM 63

Multivalued Logic

• Bit (0, 1)
• Tristate buffers and buses =>

high impedance state ‘Z’
• Unknown state ‘X’

– e. g., a gate is driven by ‘Z’, output is unknown
– a signal is simultaneously driven by ‘0’ and ‘1’

18/06/2003 UAH-CPE/EE 422/522 AM 64

Tristate Buffers

Resolution function to
determine the actual
value of f since it is
driven from two different
sources

18/06/2003 UAH-CPE/EE 422/522 AM 65

Signal Resolution

• VHDL signals may either be
resolved or unresolved

• Resolved signals have an associated
resolution function

• Bit type is unresolved –
– there is no resolution function
– if you drive a bit signal to two different values

in two concurrent statements,
the compiler will generate an error

18/06/2003 UAH-CPE/EE 422/522 AM 66

Signal Resolution (cont’d)
signal R : X01Z := ‘Z’; ...
R <= transport ‘0’ after 2 ns, ‘Z’ after 6 ns;
R <= transport ‘1’ after 4 ns;
R <= transport ‘1’ after 8 ns, ‘0’ after 10 ns;

•12

18/06/2003 UAH-CPE/EE 422/522 AM 67

Resolution Function for X01Z

Define AND and OR for
4-valued inputs?

18/06/2003 UAH-CPE/EE 422/522 AM 68

AND and OR Functions Using X01Z

‘X’‘X’‘0’‘X’‘Z’

‘X’‘1’‘0’‘X’‘1’

‘0’‘0’‘0’‘0’‘0’

‘X’‘X’‘0’‘X’‘X’

‘Z’‘1’‘0’‘X’AND

‘X’‘1’‘X’‘X’‘Z’

‘1’‘1’‘1’‘1’‘1’

‘X’‘1’‘0’‘X’‘0’

‘X’‘1’‘X’‘X’‘X’

‘Z’‘1’‘0’‘X’OR

18/06/2003 UAH-CPE/EE 422/522 AM 69

IEEE 1164 Standard Logic

• 9-valued logic system
– ‘U’ – Uninitialized
– ‘X’ – Forcing Unknown

– ‘0’ – Forcing 0
– ‘1’ – Forcing 1

– ‘Z’ – High impedance
– ‘W’ – Weak unknown

– ‘L’ – Weak 0
– ‘H’ – Weak 1

– ‘-’ – Don’t care

If forcing and weak signal are
tied together, the forcing signal
dominates.

Useful in modeling the internal
operation of certain types of
ICs.

In this course we use a subset
of the IEEE values: X10Z

18/06/2003 UAH-CPE/EE 422/522 AM 70

Resolution Function for IEEE 9-valued

18/06/2003 UAH-CPE/EE 422/522 AM 71

AND Table for IEEE 9-valued

18/06/2003 UAH-CPE/EE 422/522 AM 72

AND Function for std_logic_vectors

